349 research outputs found

    From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide

    Full text link
    Using first-principles calculations, we report that ZrO is a topological material with the coexistence of three pairs of type-II triply degenerate nodal points (TNPs) and three nodal rings (NRs), when spin-orbit coupling (SOC) is ignored. Noticeably, the TNPs reside around Fermi energy with large linear energy range along tilt direction (> 1 eV) and the NRs are formed by three strongly entangled bands. Under symmetry-preserving strain, each NR would evolve into four droplet-shaped NRs before fading away, producing distinct evolution compared with that in usual two-band NR. When SOC is included, TNPs would transform into type-II Dirac points while all the NRs have gaped. Remarkably, the type-II Dirac points inherit the advantages of TNPs: residing around Fermi energy and exhibiting large linear energy range. Both features facilitate the observation of interesting phenomena induced by type-II dispersion. The symmetry protections and low-energy Hamiltonian for the nontrivial band crossings are discussed.Comment: 7 pages, 5 figures, J. Phys. Chem. Lett. 201

    Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis

    Get PDF
    The orientation of polymers under confinement is a basic, yet not fully understood phenomenon. In this work, the texture of poly(ethylene oxide) (PEO) infiltrated in nanoporous anodic alumina oxide (AAO) templates was investigated by X-ray pole figures. The influence of geometry and crystallization conditions, such as pore diameter, aspect ratio, and cooling rates, was systematically examined. All the samples exhibited a single, volume-dependent crystallization temperature (Tc) at temperatures much lower than that exhibited by bulk PEO, indicating “clean” microdomains without detectable heterogeneous nucleation. An “orientation diagram” was established to account for the experimental observations. Under very high cooling rates (quenching), crystallization of PEO within AAO was nucleation-controlled, adopting a random distribution of crystallites. Under low cooling rates, growth kinetics played a decisive role on the crystal orientation. A relatively faster cooling rate (10 °C/min) and/or smaller pores lead to the * ║ pore axis (n⃗) mode (uniaxial orientation). When the cooling rate was lower (1 °C/min), and/or the pores were larger, a mixed orientation, with a coexistence of * ║ n⃗ and * ║ n⃗ , was observed. The results favor the kinetic model where the fastest growth direction tends to align parallel to the pore axis.This work is supported by the National Natural Science Foundation of China (NSFC, 21873109, 51820105005, 21274156). G. L. is grateful to the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015026). G. L., D. W., and A. J. M. also acknowledge European funding by the RISE BIODEST project (H2020-MSCA-RISE-2017-778092). The authors thank Dr. Zhongkai Yang for assistance with pole figure measurement

    Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin

    Get PDF
    In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structured grid system. The bony rays embedded in the fin are modeled as nonlinear Euler-Bernoulli beams. To demonstrate the capability of this model, we numerically investigate the effect of various ray stiffness distributions on the deformation and propulsion performance of a 3D caudal fin. Our numerical results show that with specific ray stiffness distributions, certain caudal fin deformation patterns observed in real fish (e.g. the cupping deformation) can be reproduced through passive structural deformations. Among the four different stiffness distributions (uniform, cupping, W-shape and heterocercal) considered here, we find that the cupping distribution requires the least power expenditure. The uniform distribution, on the other hand, performs the best in terms of thrust generation and efficiency. The uniform stiffness distribution, per se, also leads to 'cupping' deformation patterns with relatively smaller phase differences between various rays. The present model paves the way for future work on dynamics of skeleton-reinforced membranes

    Numerical investigation of a bio-inspired underwater robot with skeleton-reinforced undulating fins

    Get PDF
    In this paper, the propulsion performance of a bio-inspired underwater robot with a pair of ray-supported undulating pectoral fins is numerically investigated with a fully coupled fluid-structure interaction model. In this model, the flexible fin rays are represented by nonlinear Euler-Bernoulli beams while the surrounding flow is simulated via solving the Navier-Stokes equations. Kinematically, each pectoral fin is activated independently via individually distributed time-varying forces along each fin ray, which imitate effects of tendons that can actively curve the fin rays. We find that the propulsion performance of the bio-inspired robot is closely associated with the phase difference between the leading edge ray and the trailing edge ray of the pectoral fin. The results show that with a symmetrical kinematics, the highest thrust is created when the phase difference is 90 degree while the point maximizing the propulsion efficiency varies with the motion frequency. It is also found that there is a minimum frequency of generating net thrust for a specific parameter setup, which rises as the increase of phase difference. Compared with the symmetrical kinematics, the non-symmetrical kinematics generates more complicated hydrodynamic forces and moments which may be beneficial for the turning maneuver

    Harvesting energy from a flexible flapping membrane in a uniform flow

    Get PDF
    The flapping dynamics and strain energy distribution of a flexible membrane immersed in a uniform flow is numerically studied. The system is controlled by two main parameters, i.e.the structure-fluid mass ratio (M*) and the reduced flow velocity (U*). Simulation results demonstrate that the membrane exhibits a periodic oscillation with one dominant frequency for a certain range of non-dimensional velocity. Within this range, flapping amplitude increases with U*, and non-uniform strain energy distribution is generated along the membrane. In addition, the maximum available strain energy shows an upward trend with an increasing of U*

    Anomaly Crossing: New Horizons for Video Anomaly Detection as Cross-domain Few-shot Learning

    Full text link
    Video anomaly detection aims to identify abnormal events that occurred in videos. Since anomalous events are relatively rare, it is not feasible to collect a balanced dataset and train a binary classifier to solve the task. Thus, most previous approaches learn only from normal videos using unsupervised or semi-supervised methods. Obviously, they are limited in capturing and utilizing discriminative abnormal characteristics, which leads to compromised anomaly detection performance. In this paper, to address this issue, we propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection. In particular, we formulate a new learning task: cross-domain few-shot anomaly detection, which can transfer knowledge learned from numerous videos in the source domain to help solve few-shot abnormality detection in the target domain. Concretely, we leverage self-supervised training on the target normal videos to reduce the domain gap and devise a meta context perception module to explore the video context of the event in the few-shot setting. Our experiments show that our method significantly outperforms baseline methods on DoTA and UCF-Crime datasets, and the new task contributes to a more practical training paradigm for anomaly detection

    A study of 3D flexible caudal fin for fish propulsion

    Get PDF
    This paper is inspired by a recent numerical study (Shoele and Zhu, 2012, “Leading edge strengthening and the propulsion performance of flexible ray fins,” Journal of Fluid Mechanics, Vol. 693, pp. 402–432), which shows that, for a 2D flexible ray replicating the pectoral fins of live fish, undergoing a flapping motion in a viscous fluid, the performance can be significantly improved via the flexibility distribution on the rays. In present study, we investigate the propulsion capability of a 3D caudal fin undergoing a flapping motion. The embedded rays are modeled as linear springs and the soft membrane is modeled as a flexible plate being able to deform in span-wise direction. A finite-volume method based Navier-Stokes solver is used to solve the fluid-structure interaction problem. The present paper focuses on the effects of various distributions of the ray and the ray flexibilities, which can lead to different fin deformations. It is shown that the detailed ray distribution has significant influence on the propulsion performance. By distributing fin rays at the tips rather than the middle of fin, a less power expenditure is observed, leading to higher propulsion efficiency. However, larger thrust force is obtained through distributing the rays at the middle, which is attributed to larger effective flapping amplitude. Additionally, ray flexibilities also play a pivotal role in the thrust generation of the fin

    Growth of Dust Particles due to Sea Salt in the Marine Boundary Layer and Its Potential Implication

    Get PDF
    熊本大学金沢大学大学院自然科学研究科Chinese Academy of SciencePromoting Environmental Pesearch in Pan-Japan Sea Area : Young Researchers\u27 Network, Schedule: March 8-10,2006,Kanazawa Excel Hotel Tokyu, Japan, Organized by: Kanazawa University 21st-Century COE Program, Environmental Monitoring and Prediction of Long- & Short- Term Dynamics of Pan-Japan Sea Area ; IICRC(Ishikawa International Cooperation Research Centre), Sponsors : Japan Sea Research ; UNU-IAS(United Nations University Institute of Advanced Studies)+Ishikawa Prefecture Government ; City of Kanazaw
    corecore